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Introduction

Throughout this talk, unless otherwise specified, let

Setup 1

(R,m) a RLR with d = dimR

I an integrally closed m-primary ideal of R.

Question 2

When does the Rees algebra R(I ) =
⊕

n≥0 I
n become a CM normal domain?

Question 2 is always true when d ≤ 1.

As R is a normal domain, we have R(I )
Q(R(I ))

=
⊕

n≥0 I
n.

R(I ) is normal ⇐⇒ I is normal, i.e., I n = I n for ∀ n ≥ 1.

Preceding results

If d = 2, then R(I ) is normal ([Zariski, 1938], [Zariski-Samuel, 1960]).

If d = 2, then R(I ) is CM ([Lipman-Teissier, 1981]).
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If R is a two-dimensional rational singularity, then R(I ) is a CM normal domain,
provided |R/m| = ∞ ([Lipman, 1969]).

Recall that a normal local ring (R,m) is a rational singularity if ∃ resolution of singularity

f : X → SpecR s.t. Hi (X ,OX ) = (0) for ∀ i > 0.

Preceding results ([Cutkosky, 1990])

Let (R,m) be an excellent normal local domain with dimR = 2. Suppose that R/m is
algebraically closed. Then TFAE.

(1) R is a rational singularity.

(2) If l and J are integrally closed m-primary ideals of R, then IJ is integrally closed.

(3) If l is an integrally closed m-primary ideal of R, then I 2 is integrally closed.

By [Cutkosky, 1990], the ring

R = Q[[X ,Y ,Z ]]/(X 3 + 3Y 3 + 9Z 3)

is a non-rational normal local domain with dimR = 2, and is a simple elliptic singularity.

Besides, for all integrally closed m-primary ideals l and J of R, IJ is integrally closed.
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When d ≥ 3, we have the following examples.

Example 3

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k. Consider

Q = (X 7,Y 3,Z 2) and I = Q = (X 7,Y 3,Z 2,X 5Y ,X 4Z ,X 3Y 2,X 2YZ ,Y 2Z).

Then I = I , I 2 ̸= I 2, and I 2 = QI . Hence R(I ) is CM, but not normal.

The ideal I as in Example 3 is the contraction of k · t42 + t44A where A = k[[t6, t14, t21]].

Example 4 ([Huckaba-Huneke, 1999])

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k. Suppose ch k ̸= 3.
Consider

I = (X 4,X (Y 3 + Z 3),Y (Y 3 + Z 3),Z(Y 3 + Z 3)) + m5

where m = (X ,Y ,Z). Then I is normal and grI (R) =
⊕

n≥0 I
n/I n+1 is not CM. Hence,

R(I ) is normal, but not CM.
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Let v(−) denote the embedding dimension of a ring.

Preceding results

By [Goto, 1987], we have

(1) µR(I ) = d =⇒ R(I ) is a CM normal domain

(2) µR(I ) = d ⇐⇒ v(R/I ) ≤ 1.

By [Ciupercă, 2006, 2011], we have

(1) µR(I ) = d + 1 =⇒ R(I ) is a CM normal domain

(2) µR(I ) = d + 1 =⇒ v(R/I ) ≤ 2.

With this observation, one of the main results of this talk is stated as follows.

Theorem A

Let (R,m) be a RLR with d = dimR and
√
I = m s.t. I = I . Then

(1) v(R/I ) ≤ 2 =⇒ R(I ) is a CM normal domain

(2) µR(I ) ≤ d + 2 =⇒ v(R/I ) ≤ 2.

In particular, if µR(I ) ≤ d + 2, then R(I ) is a CM normal domain.
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Preliminaries

In this section, let R be a Noetherian ring and I an ideal of R.

An element x ∈ R is called integral over I , if

xn + c1x
n−1 + · · ·+ cn = 0 for ∃ n ≥ 1, ∃ ci ∈ I i (1 ≤ i ≤ n).

We set
I ⊆ I = {x ∈ R | x is integral over I} ⊆ R

which forms an ideal of R, and call it the integral closure of I .

We say that
▶ I is integrally closed, if I = I

▶ I is normal, if I n = I n for ∀ n ≥ 1.

We define
R(I ) = R[It] =

∑
n≥0

I ntn ⊆ R[t], R(I ) ∼=
⊕
n≥0

I n

and call it the Rees algebra of I .

The canonical morphism f : ProjR(I ) → SpecR is the blow-up of SpecR along the
subscheme V (I ) defined by I .

Rees algebras also arise as the bihomogeneous coordinate rings of graphs of rational
maps between projective spaces.
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Note that

R(I )
R[t]

=
∑

n≥0 I
ntn ∼=

⊕
n≥0 I

n and R(I )
Q(R(I ))

=
∑

n≥0 I
nRtn ∼=

⊕
n≥0 I

nR.

Hence, R(I ) is normal ⇐⇒ I is normal, provided R is a normal domain.

The associated graded ring of I

grI (R) =
⊕
n≥0

I n/I n+1 ∼= R/I ⊗R R(I )

plays a key role in the study of R(I ).

Theorem 5 ([Goto-Shimoda, 1979])

Let (R,m) be a CM local ring with dimR ≥ 1 and
√
I = m. Then

R(I ) is CM ⇐⇒ grI (R) is CM and a(grI (R)) < 0.

Theorem 5 holds for ideals I with htR I > 0 ([Trung-Ikeda, 1989]).

Theorem 5 holds for filtrations of ideals/modules ([Goto-Nishida, 1994], [Viet,
1993], [T-Phuong-Dung-An, 2017]).

When R is a RLR (or more generally pseudo-rational local ring) and I ̸= R, we have

R(I ) is CM ⇐⇒ grI (R) is CM ([Lipman, 1994]).
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We prove Theorem A by induction on dimR.

Example 6

Let (R,m) be a RLR with dimR = 2 and m = (x , y). We consider I = m2 = (x2, xy , y 2).
Then I = I , but I/(x2) ̸= I/(x2), because x ̸∈ I/(x2).

Theorem 7 ([Hong-Ulrich, 2014] The preprint was posted on arXiv in 2006.)

Let (R,m) be a Noetherian, equi-dimensional, universally catenary local ring s.t. R/
√

(0)
is analytically unramified. Let I = (a1, a2, . . . , an) be an ideal of R with htR I ≥ 2. Set

R ′′ = R[Z1,Z2, . . . ,Zn]mR[Z1,Z2,...,Zn ], I ′′ = IR ′′, and x =
∑n

i=1 Ziai .

Then
I ′′/(x) = I ′′/(x).

Theorem 8 ([Ciupercă, 2011])

Let (R,m) be a RLR and I an ideal of R s.t. I ̸⊆ m2. For each ∀ x ∈ I \m2, we have

I/(x) = I/(x).

Naoki Endo (Meiji University) CM normal Rees algebras of integrally closed ideals 8 / 19



Introduction Preliminaries Proof of Theorem A Rees algebras of integrally closed modules

Proof of Theorem A

Theorem A

Let (R,m) be a RLR with d = dimR and
√
I = m s.t. I = I . Then

(1) v(R/I ) ≤ 2 =⇒ R(I ) is a CM normal domain

(2) µR(I ) ≤ d + 2 =⇒ v(R/I ) ≤ 2.

In particular, if µR(I ) ≤ d + 2, then R(I ) is a CM normal domain.

(Proof) (1) We may assume d ≥ 3 and the assertion holds for d − 1. Choose a regular
subsystem a1, a2, . . . , ad−2 of parameters of R s.t. I = (a1, a2, . . . , ad−2, ad−1, . . . , an).

Let

R ′′ = R[Z1,Z2, . . . ,Zn]mR[Z1,Z2,...,Zn ], I ′′ = IR ′′, m′′ = mR ′′, and x =
∑n

i=1 Ziai .

Since x ̸∈ (m′′)2, we see that R ′′/(x) is a RLR with dimR ′′/(x) = d − 1. Besides√
I ′′/(x) = m′′/(x) and I ′′/(x) = I ′′/(x) = I ′′/(x).

Moreover, because v(R/I ) ≤ 2 and R ′′/(x) is regular, we obtain

v(R ′′/(x)/I ′′/(x)) ≤ 2.
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The induction argument shows R(I ′′/(x)) is CM normal. In particular, grI ′′/(x)(R
′′/(x))

is CM. Let F =
{
(I ′′)n

}
n∈Z

and consider

G(F) =
⊕
n≥0

(I ′′)n/(I ′′)n+1 = R′(F)/t−1R′(F), where R′(F) =
∑
n∈Z

(I ′′)ntn ⊆ R ′′[t, t−1].

Then xt ∈ R′(F) is a NZD on G(F) ([Hong-Ulrich, 2014]). As I ′′/(x) is normal, we get

(I ′′)n ⊆ (I ′′)n + (x)

for ∀ n ≥ 1. Thus

(I ′′)n =
[
(I ′′)n + (x)

]
∩ (I ′′)n = (I ′′)n +

[
(x) ∩ (I ′′)n

]
= (I ′′)n + x · (I ′′)n−1

because (x) ∩ (I ′′)n ⊆ x · (I ′′)n−1. The induction on n ≥ 1 shows

(I ′′)n = (I ′′)n (∀ n ≥ 1)

so that R(I ′′) is normal. Therefore, G(F) = grI ′′(R
′′) and is CM, because

grI ′′(R
′′)/(xt) grI ′′(R

′′) ∼= grI ′′/(x)(R
′′/(x)).

Thus R(I ′′) is CM. Since R(I ) → R ′′ ⊗R R(I ) ∼= R(I ′′) is faithfully flat, we conclude

that R(I ) is a CM normal domain.
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(2) May assume d ≥ 3, |R/m| = ∞. As
√
I = m and I = I , the ideal I is m-full. Then

I ̸⊆ m2.

Indeed, if I ⊆ m2, then

d + 2 ≥ µR(I ) ≥ µR(m
2) =

(
d + 1
2

)
=

d(d + 1)

2
.

This makes a contradiction because d ≥ 3. Hence I ̸⊆ m2. So, we may assume d ≥ 4
and the assertion holds for d − 1. Choose x ∈ I s.t. x ̸∈ m2. Then

I/(x) = I/(x) = I/(x).

Moreover, R/(x) is a RLR with dimR/(x) = d − 1,
√

I/(x) = m/(x), and

µR/(x)(I/(x)) = µR(I )− 1 ≤ (d + 2)− 1 = (d − 1) + 2.

By induction hypothesis, we have v(R/(x)/I/(x)) ≤ 2. Since R/(x) is regular, we get

v(R/I ) ≤ 2

as desired.
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Example 9

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k.

Let I = (X 3,Y 3,Z) = (X 3,X 2Y ,XY 2,Y 3,Z). Then I = I ,
√
I = m, and

µR(I ) = 5 = d + 2. Hence, R(I ) is a CM normal domain.

Let I = (X 4,Y 4,Z) = (X 4,X 3Y ,X 2Y 2,XY 3,Y 4,Z). Then I = I ,
√
I = m, and

µR(I ) = 6 > d + 2, but v(R/I ) = 2. Hence, R(I ) is a CM normal domain.

Let I = (f ) +mn for ∀ f ∈ m \m2 and ∀ n ≥ 1. Then I = I ,
√
I = m, and

v(R/I ) ≤ 2. Hence, R(I ) is a CM normal domain.

Let I = (X 2,Y 2,Z 4) = (X 2,XY ,Y 2,Z 4,XZ 2,YZ 2) ⊆ m2. Then I = I ,
√
I = m,

and v(R/I ) = 3. Since I 2 = I 2, the ideal I is normal. By setting Q = (X 2,Y 2,Z 4),
we have I 2 = QI . Hence, R(I ) is a CM normal domain.

Theorem 10 ([Reid-Roberts-Vitulli, 2003])

Let R = k[X1,X2, . . . ,Xd ] be the polynomial ring over a field k and I a monomial ideal

s.t. I i = I i for 1 ≤ ∀ i ≤ d − 1. Then I is normal.
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Rees algebras of integrally closed modules

Theorem A

Let (R,m) be a RLR with d = dimR and
√
I = m s.t. I = I . Then

(1) v(R/I ) ≤ 2 =⇒ R(I ) is a CM normal domain

(2) µR(I ) ≤ d + 2 =⇒ v(R/I ) ≤ 2.

In particular, if µR(I ) ≤ d + 2, then R(I ) is a CM normal domain.

Theorem A can be extended to the Rees algebras of integrally closed modules.

Theorem B

Let (R,m) be a RLR with d = dimR and F = R⊕e (e > 0). Let E be an R-submodule
of F s.t. ℓR(F/E) < ∞ and E = E. Then

(1) µR([E +mF ]/E) ≤ 2 =⇒ R(E) is a CM normal domain

(2) µR(E) ≤ d + e + 1 =⇒ µR([E +mF ]/E) ≤ 2.

In particular, if µR(E) ≤ d + e + 1, then R(E) is a CM normal domain.
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Let R be a Noetherian ring and E ⊆ F = R⊕e (e > 0) an R-submodule of F . Let

Sym(i) : SymR(E) → SymR(F ) = R[t1, t2, . . . , te ] =: S

be the induced homomorphism of E ⊆ F . Then the Rees algebra of E is defined by

R(E) = ImSym(i) ⊆ S = R[t1, t2, . . . , te ]

=
⊕
n≥0

E n.

R(E) is a standard graded algebra over R with E 1 = E .

If E = I , then R(E) = R(I ).

If E = I1 ⊕ I2 ⊕ · · · ⊕ Ir , then R(E) = R(I1, I2, . . . , Ir ) = R[I1t1, I2t2, . . . , Ir tr ].

When E = I1 ⊕ I2 ⊕ · · · ⊕ Ir , R(E) arises in successive blow-up of SpecR at the
subschemes defined by I1, I2, . . . , Ir .

Gaffney required R(E) for applications to equisingularity theory.

For ∀ n ≥ 0, we define

E n =
[
R(E)

S
]
n
=

[
(ES)n

]
n
⊆ Sn = F n.

In particular

E =
[
ES

]
1
= {x ∈ F | xn + c1x

n−1 + · · ·+ cn = 0 for ∃ n ≥ 1, ∃ ci ∈ E i (1 ≤ i ≤ n)}.
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We say that

E is integrally closed, if E = E

E is normal, if E n = E n for ∀ n ≥ 1.

When R is a normal domain, we have

R(E)
S
= R(E)

Q(R(E))
.

Hence, R(E) is normal ⇐⇒ E is normal.

For an arbitrary module, one lacks the remarkable interaction that exists for an ideal
I ⊆ R between R(I ) and grI (R).

Generic Bourbaki ideals ([Simis-Ulrich-Vasconcelos, 2003])

Suppose that (R,m) is a local ring and ∃ rankE = e > 0. Assume that Ep is free for
∀ p ∈ SpecR with depthRp ≤ 1. Set

E = Ra1 + Ra2 + · · ·+ Ran (ai ∈ E)

Z = {Zij | 1 ≤ i ≤ n, 1 ≤ j ≤ e − 1}
R ′′ = R[Z ]mR[Z ], E

′′ = E ⊗R R ′′, xj =
∑n

i=1 Zijai (1 ≤ j < e), G ′′ =
∑e−1

j=1 R ′′xj .

Then
G ′′ ∼= (R ′′)⊕(e−1), E ′′/G ′′ ∼= ∃ I ⊆ R ′′ ideal of R ′′ s.t. gradeR′′ I > 0

The ideal I is called the generic Bourbaki ideal of E .
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With this notation, we have

R(E) is CM ⇐⇒ R(I ) is CM

R(E) is normal ⇐= R(I ) is normal, and the converse holds if

depthRp ⊗R R(E) ≥ e + 1 for (0) ̸= ∀ p ∈ SpecR.

If any of the conditions of above hold, then

R(E ′′)/(G ′′) ∼= R(I ) and x1, x2, . . . , xe−1 forms a regular sequence on R(E ′′).

Theorem B

Let (R,m) be a RLR with d = dimR and F = R⊕e (e > 0). Let E be an R-submodule
of F s.t. ℓR(F/E) < ∞ and E = E. Then

(1) µR([E +mF ]/E) ≤ 2 =⇒ R(E) is a CM normal domain

(2) µR(E) ≤ d + e + 1 =⇒ µR([E +mF ]/E) ≤ 2.

In particular, if µR(E) ≤ d + e + 1, then R(E) is a CM normal domain.
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(Proof) We may assume E ̸= F and d ≥ 2. Let

E = Ra1 + Ra2 + · · ·+ Ran (ai ∈ E)

Z = {Zij | 1 ≤ i ≤ n, 1 ≤ j ≤ e − 1}
R ′′ = R[Z ]mR[Z ], E

′′ = E ⊗R R ′′, xj =
∑n

i=1 Zijai (1 ≤ j < e), G ′′ =
∑e−1

j=1 R ′′xj .

Then

G ′′ ∼= (R ′′)⊕(e−1), E ′′/G ′′ ∼= ∃ I ⊆ R ′′ ideal of R ′′ s.t. gradeR′′ I > 0.

By setting F ′′ = F ⊗R R ′′, we have

0 // G ′′ // E ′′ / /

i

��

E ′′/G ′′ ∼= I

��

// 0

0 // G ′′ // F ′′ // F ′′/G ′′ ∼= R ′′ // 0

so that (0) ̸= F ′′/E ′′ ∼= R ′′/I . This shows
√
I = m′′. As grade′′R I = d ≥ 2, the sequence

0 → G ′′ → E ′′ → I → 0

splits. Hence E ′′ = G ′′ ⊕ I . Therefore

[E ′′ +mF ′′]/E ′′ =
G ′′ ⊕m′′

G ′′ ⊕ I
∼= m′′/I .
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This implies v(R ′′/I ) = µR′′(m′′/I ) = µR([E +mF ]/E) ≤ 2. Besides, we can check
I = I by using E = E . Therefore, by Theorem A, R(I ) is a CM normal domain. Hence,
by [Simis-Ulrich-Vasconcelos, 2003], R(E) is a CM normal domain.

Recall that E is a parameter module in F if ℓR(F/E) < ∞ and µR(E) = d + e − 1.

Corollary 11 ([Simis-Ulrich-Vasconcelos, 2003], [Brennan-Vasconcelos, 2004])

Let (R,m) be a RLR with d = dimR and F = R⊕e (e > 0). Let E be a parameter
module in F . If E = E, then R(E) is a CM normal domain.

Example 12

Let R = k[[X ,Y ,Z ]] be the formal power series ring over a field k. Let I = (f ) +mn for
∀ f ∈ m \m2 and ∀ n ≥ 1. Set

E =
m⊕(e−1)

⊕
I

⊆ mF =
m⊕(e−1)

⊕
m

⊆ F = R⊕e .

Then E = E , ℓR(F/E) < ∞, and µR([E +mF ]/E) ≤ 2. Hence, R(E) is a CM normal
domain.
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Thank you for your attention.
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